

DGG-003-011201 Seat No. _____

M. Sc. (Sem. II) (CBCS) Examination

April / May - 2015

IC - 201: Industrial Chemistry (Reaction Engineering)

> Faculty Code: 003 Subject Code: 011201

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:

- 1) All Questions are compulsory.
- 2) Each question carries 14 marks.
- 3) Assume suitable data wherever necessary.

Answer any seven out of the following: Q1]

- 1) Define the term space velocity and space time?
- 2) What do you mean by the term macro fluid and micro fluid?
- 3) What do you mean by the term activity of a catalyst?
- 4) Define the term rate constant of a chemical reaction. Give its units.
- 5) Draw contacting pattern for two phase system of plug A fluid with plug B fluid.
- 6) Explain series reaction and parallel reaction.
- 7) What do you mean by exothermic reaction? Give an example.
- 8) What do you mean the term Residence Time Distribution.
- 9) Explain equilibrium concept applied to reaction engineering?
- 10) What is meant by the term rate of reaction based on unit volume of solid in gas-solid system?

Q2] Answer any two from the following:

- 1) Explain in detail order of a chemical reaction.
- 2) Explain the role of thermodynamics in reactor designing.
- 3) Explain testing of a kinetic model and search for the correct mechanism for the following: Consider $2A + B \longleftrightarrow A_2B$, the irreversible reaction proceeds by more than one step by formation of intermediate A* and Rate $_{(A2B)} = (0.72 \text{ C}_A^2.\text{C}_B)/(1+2\text{C}_A)$. Check a model of two step irreversible reaction formation of intermediate A* is correct or not.

Q3] Answer the following:

- 1) Give point of difference between selection of batch reactors and continuous reactors.
- 2) What will be initial rate of reaction if the rate constant is 1 x 10⁻³ min⁻¹ and concentration of reactant is 0.2 mol.dm⁻³. What % conversion takes place after 200 minutes?

OR

Q3] Answer the following:

- 1) Explain mechanism of solid catalyzed gas phase reaction (L-H-H-W Model).
- 2) Derive an equation for rate dependency of a chemical reaction with temperature using Arrhenius equation.

Q4] Answer any two from the following:

- 1) Explain in detail CSTR with a labeled diagram along with advantages and disadvantages.
- 2) Derive an equation for integral rate equation for first order reaction.
- 3) The following data was obtained for the reaction

2NO + Br₂ -----> 2NOBr

Experiment	Initial Concentration (Mol.L ⁻¹)		Initial Rate
	[NO]	[Br ₂]	Mol.L ⁻¹ .min ⁻¹
1	0.1	0.1	1.30 x 10 ⁻⁶
11	0.2	0.1	5.20 x 10 ⁻⁶
111	0.2	0.3	1.56 x 10 ⁻⁶

Determine:

- a) Order of reaction with respect to NO and Br₂.
- b) Rate constant.
- c) Rate law.

Q5] Answer any two from the following:

- 1) Explain in detail Plug Flow Reactor with a neat diagram.
- 2) Derive an equation for Langmuir adsorption isotherm.
- 3) The half-life period for radioactive decay of ¹⁴C is 5730 years. An archeological artifact contained wood had only 80% of the ¹⁴C found in the living tree. Estimate the age of the sample.
- 4) Rate of decomposition of hydrogen peroxide at particular temperature was measured By titrating its solution with acidic potassium permanganate.

Time (s)	0	10	20
Mole of KMnO ₄ (mol.L ⁻¹)	22.8	13.8	8.3